top of page

UNit 1: Graphing and describing data

Definitions:

​

Dot plot: a graph used when the data is finite-discrete data works best

Stem plot: 

 -leaves are 1 digit    -5-10 stems    -can round or truncate data    -make a key

Histogram:

-make a frequency table    -bin widths must be equal    -5-10 bins    -bars are touching

​

​

​

​

​

​

​

        

Dotplot_of_random_values_2.png
stemplot-finished.jpg
Screenshot 2019-09-13 at 11.19.35 AM.png

Shape of 

graphs:

Symmetric: mean=median=mode

Skewed right: mean>median>mode

Skewed left: mean<median<mode

Bi-modal

Uniform

Box Plot:min, Q1, median, Q3, max

Screenshot 2019-09-13 at 11.26.10 AM.png
R-US_state_areas-basicboxplot+colour.svg

Advantages and disadvantages of graphs:

Box plot:

advantage

-can see outliers   -quick to make   -see 5 # summary

disadvantages

-shape is hard to see   -cant see all values   -cant see gaps in data

Stem/Split:

advantages

-can see shape   -see all values   -sample size is present   

disadvantages

-some gaps might be hidden   -time consuming

Histogram:

advantages

-can see shape   -can see gaps   -flexible   -quick

disadvantages 

-dont know all values   -changing bin width could change shape

Dot Plot:

advantages

-see all values

disadvantage

-shape is inconclusive   -takes more time

​

Measures of

center:

Mean:average of all the numbers in the data set

     -use when graph is symmetric

Median:middle number in a set

     -if "n" is odd. median is a number in the data set

     -if "n" is even. median is the average of the two middle numbers

     -use when graph is skewed

Mode:the number that occurs most in the set

     -use when graph is bi-modal

Screenshot 2019-09-13 at 11.30.45 AM.png
Screenshot 2019-09-13 at 11.30.43 AM.png

Spread:

How far apart is the data?

Range:maximum-minimum

Inner Quartile Range(IQR): Quartile 3-Quartile 1(Q3-Q1)

Measures of spread:variance

     -used to combine multiple data sets

     -o²=variance of population

     -s²=variance of sample

Outliers:

Outliers:values in a data set that don't follow the general pattern

Upper limit: Q3+1.5(IQR)

Lower limit: Q1-1.5(IQR)

Standard

Deviation:

Standard deviation:average distance from the mean         

Screenshot 2019-09-13 at 11.49.59 AM.png

1.subtract the mean from each value in the data set

2.square all values from step one

3.add all values in step 2

4.divide by n-1

5.take the square root

bottom of page